什么是大数据技术啊?

大数据 2025-04-01 01:30 浏览(0) 评论(0)
- N +

一、什么是大数据技术啊?

 大数据技术就是对这些含有意义的数据进行专业化处理。传合的百搜这个平台就有很强大的智能功能,它帮助你在将近6亿的网民中筛选出适合你的人群,并且根据属性标签进行人群细分。提高对数据的加工能力,通过加工实现数据的增值。传合网络认为,现代企业、互联网媒体离不开大数据,依靠大数据可以提供足够有效的资源。

二、大数据分析的技术有哪些?

简单说有三大核心技术:拿数据,算数据,卖数据。

首先做为大数据,拿不到大量数据都白扯。现在由于机器学习的兴起,以及万金油算法的崛起,导致算法地位下降,数据地位提高了。举个通俗的例子,就好比由于教育的发展,导致个人智力重要性降低,教育背景变重要了,因为一般人按标准流程读个书,就能比牛顿懂得多了。谷歌就说:拿牛逼的数据喂给一个一般的算法,很多情况下好于拿傻傻的数据喂给牛逼的算法。而且知不知道弄个牛逼算法有多困难?一般人连这个困难度都搞不清楚好不好……拿数据很重要,巧妇难为无米之炊呀!所以为什么好多公司要烧钱抢入口,抢用户,是为了争夺数据源呀!不过运营,和产品更关注这个,我是程序员,我不管……

其次就是算数据,如果数据拿到直接就有价值地话,那也就不需要公司了,政府直接赚外快就好了。苹果落地都能看到,人家牛顿能整个万有引力,我就只能捡来吃掉,差距呀……所以数据在那里摆着,能挖出啥就各凭本事了。算数据就需要计算平台了,数据怎么存(HDFS, S3, HBase, Cassandra),怎么算(Hadoop, Spark)就靠咱们程序猿了……

再次就是卖得出去才能变现,否则就是搞公益了,比如《疑犯追踪》里面的李四和大锤他们……见人所未见,预测未来并趋利避害才是智能的终极目标以及存在意义,对吧?这个得靠大家一块儿琢磨。

其实我觉得最后那个才是“核心技术”,什么Spark,Storm,Deep-Learning,都是第二梯队的……当然,没有强大的算力做支撑,智能应该也无从说起吧。

NoSQL,分布式计算,机器学习,还有新兴的实时流处理,可能还有别的。

数据采集,数据存储,数据清洗,数据挖掘,数据可视化。数据采集有硬件采集,如OBD,有软件采集,如滴滴,淘宝。数据存储就包括NOSQL,hadoop等等。数据清洗包括语议分析,流媒体格式化等等。数据挖掘包括关联分析,相似度分析,距离分析,聚类分析等等。数据可视化就是WEB的了。

三、大数据好学吗

现在大数据无疑是一个处于风口的行业,人才的短缺是当前很多企业面临巨大的困难。也有很多人正在观望大数据这一市场,各行各业想要转行的、想要提升的都非常多,这不是因为大数据好学,更大的原因是传统技术过于成熟,市场已经过饱和了,所以说现在的Java、ios之类的行业就算有几年的工作经验,但是薪资却还是没有起色。大数据作为一个新技术,专业人才稀少,市场的需求,导致了大数据人才就业前景很好,薪资也非常可观。要怎么学习大数据呢?西线学院为你解答。 一、首先要抱着学习的心态; 什么事学习的心态呢?不要想着自己学不会、很难学、学不懂这些,任何事情,只要你付出努力就会收获回报,所以说要有一颗良好的学习心态。 二、你要知道什么事大数据技术; 简而言之,从大数据中提取大价值的挖掘技术。专业的说,就是根据特定目标,从数据收集与存储,数据筛选,算法分析与预测,数据分析结果展示,以辅助作出最正确的抉择,其数据级别通常在PB以上,复杂程度前所未有。

四、现在大数据的发展趋势?

主要有几点发展趋势:

一是流式架构的更替,最早大数据生态没有办法统一批处理和流计算,只能采用Lambda架构,批的任务用批计算引擎,流式任务采用流计算引擎,比如批处理采用MapReduce,流计算采用Storm。后来Spark试图从批的角度统一流处理和批处理,近年来纯流架构的Flink异军突起,由于其架构设计合理,生态健康,近年来发展特别快。

二是大数据技术的云化,一方面是公有云业务的成熟,众多大数据技术都被搬到了云上,其运维方式和运行环境都发生了较大变化,带来计算和存储资源更加的弹性变化,另一方面,私有部署的大数据技术也逐渐采用容器、虚拟化等技术,期望更加精细化地利用计算资源。

三是异构计算的需求,近年来在通用CPU之外,GPU、FPGA、ASIC等芯片发展迅猛,不同芯片擅长不同的计算任务,大数据技术开始尝试根据不同任务来调用不同的芯片,提升数据处理的效率。

四是兼容智能类的应用,随着深度学习的崛起,AI类的应用越来越广泛,大数据的技术栈在努力兼容AI的能力,通过一站式的能力来做数据分析和AI应用,这样开发者就能在一个工具站中编写SQL任务,调用机器学习和深度学习的算法来训练模型,完成各类数据分析的任务。

五、如何正确看待大数据与云计算技术

大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。

大数据的应用:大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。

云计算的主要应用:

云物联——“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。

云安全——一个从“云计算”演变而来的新名词。云安全的策略构想是:使用者越多,每个使用者就越安全,因为如此庞大的用户群,足以覆盖互联网的每个角落,只要某个网站被挂马或某个新木马病毒出现,就会立刻被截获。

云存储——在云计算概念上延伸和发展出来的一个新的概念,是指通过集群应用、网格技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。