一、大数据的应用主要在哪些领域,影响和作用是什么
领域很广的,以后会涉及到很多很多行业,涵盖了所有,这就是大数据的影响。柠檬学院大数据。
二、大数据在电力行业的应用前景有哪些
借助大数据技术,对电网运行的实时数据和历史数据进行深层挖掘分析,可掌握电网的发展和运行规律,优化电网规划,实现对电网运行状态的全局掌控和对系统资源的优化控制,提高电网的经济性、安全性和可靠性。基于天气数据、环境数据、输变电设备监控数据,可实现动态定容、提高输电线路利用率,也可提高输变电设备运检效率与运维管理水平;基于WAMS数据、调度数据和仿真计算历史数据,分析电网安全稳定性的时空关联特性,建立电网知识库,在电网出现扰动后,快速预测电网的运行稳定性,并及时采取措施,可有效提高电网的安全稳定性。
三、物流与供应链管理如何有效运用大数据
首先从移动互联网和大数据的特点入手,移动互联网突破了时间和空间的限制,使得人们可以随时随地触网,同时也表现出了碎片化。大数据是建立在大规模的数据上,有了大量的数据,就可以进行分析和归类,从而精准地确定需求。大数据对供应链的影响如下:
1、库存优化。比如,SAS独有的功能强大的库存优化模型可以实现在保持很高的客户满意度基础上,把供应成本降到最低并提高供应链的反应速度。其库存成本第一年就可下降15%~30%,预测未来的准确性则会上升20%,由此带来的是其整体营收会上升7%~10%。当然还有一些其他的潜在好处,如提升市场份额等。此外,运用SAS系统,产品质量会得到显著提升,次品率也会因此减少10%~20%。
2、创造经营效益,从供应链渠道,以及生产现场的仪器或传感器网络收集了大量数据。利用大数据对这些数据库进行更紧密的整合与分析,可以帮助改善库存管理、销售与分销流程的效率,以及对设备的连续监控。制造业要想发展,企业必须了解大数据可以产生的成本效益。对设备进行预测性维护,现在就具备采用大数据技术的条件。制造业将是大数据营业收入的主要来源。
3、B2B电商供应链整合。强大的电商将引领上游下游生产计划-下游销售对接,这种对接趋势是上游制造业外包供应链管理Supply-Chain,只专注于生产Manufacturing,ProductionChain(R&D)。物流外包上升到供应链外包是一个巨大的飞跃,体现了电商的强大竞争力和整合能力,海量数据支持和跨平台、跨公司的对接成为可能。B-B供应链整合具有强大的市场空间,能够改善我国产业布局、产业链优化、优化产能分配、降低库存、降低供应链成本、提高供应链效率。
4、物流平台规模发展,B-C商业模式整合已经成为现实,但是物流执行平台的建设是拖后腿的瓶颈。多样产品的销售供应链的整合有很大的技术难题,如供货周期、库存周期、配送时效、物流操作要求等,这样的物流中心难度很大,大数据平台建设将驱动整体销售供应链整合;中国的还有的现实问题跨区域物流配送、城乡差异等,政府的管制是一大难点/疑难杂症,大数据平台有助于政府职能调整到位。
5、产品协同设计,过去大家最关心的是产品设计。可是现在,在产品设计和开发过程中,相关人员相互协同,工厂与制造能力也在同步设计和开发中。当前的压力在于向市场交付更具竞争力、更高配置、更低价格、更高质量的产品,而同时满足所有这些要求,是制造和工程企业的下一个重大的价值所在。这也正是大数据的用武之地。
四、大数据关键与应用具体包含什么
大数据是指以多元形式,自许多来源搜集而来的庞大数据组,往往具有实时性。在企业对企业销售的情况下,这些数据可能得自社交网络、电子商务网站、顾客来访纪录,还有许多其他来源。这些数据,并非公司顾客关系管理数据库的常态数据组。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和/或虚拟化技术。大数据的意义是由人类日益普及的网络行为所伴生的,受到相关部门、企业采集的,蕴含数据生产者真实意图、喜好的,非传统结构和意义的数据 。
五、大数据技术在垂直旅游搜索中的应用?
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。由此可知:大数据就是指非结构化的数据,包括图片、视频、音频以及设备数据。大数据本身是一个现象而不是一种技术,伴随着大数据的采集、传输、处理和应用的相关技术就是大数据处理技术,是系列使用非传统的工具来对大量的结构化、半结构化和非结构化数据进行处理,从而获得分析和预测结果的一系列数据处理技术。大数据的核心是预测结果。智慧旅游是指以云计算、物联网、互联网、下一代通信网络、高性能信息处理、智能数据挖掘等技术广泛的运用于旅游中,达到旅游信息基础架构与高
度整合的旅游基础设施的完美融合使得政府旅游管理部门、相关旅游企业和旅游者等可以做出更明智决策的旅游方式。
二.智慧旅游数据具备大数据的典型特质
(一)大数据的四个特质
大数据具备“4V”的特质,即:大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB(万亿字节,TB是Terabyte 的缩写,n.万亿字节)级别,跃升到PB(PB是Petabyte 的缩写,Petabyte是一种资讯计量单位,现今通常在标示网络硬盘总容量,或具有大容量的储存媒介之储存容量时使用。)级别;第二,数据类型繁多。包括网络日志、视频、图片、地理位置信息等等。第三,价值密度低,商业价值高。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。因此,“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是“大数据”的显著特征,或者说,只有具备这些特点的数据,才是大数据。
(二)智慧旅游数据分析
目前,旅游微博、微信、视频网站、社交网站等都产生以亿计的数据。这其中既包括在线旅游预订网站中用户的预订频率、价位,也包括旅游攻略网站中用户对酒店床垫软硬的评价、对旅游景点公共服务设施是否齐全的描述,这些信息可能是文字,也可能是图片或视频音频。还有景区、酒店自己内部管理所有的信息系统、视频监控系统、感知系统等所有智慧旅游系统所产生的大量数字、文字、视频数据。根据这些数据来源主要分为外部数据和内部数据,如下图:
智慧旅游大数据来源—外部数据
智慧旅游大数据来源—内部数据
综合以上可知:智慧旅游数据具备典型的大数据特质。旅游业经过多年的信息化战略发展,产生了体量巨大的结构化和非结构化的数据,这些数据类型繁多,价值密度低。
三.大数据技术在智慧旅游中的应用
相对于传统的数据库应用,大数据分析具有数据量大、类型多、价值密度低、处理速度快等特点。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。如果把大数据比作一种产业,那么这种产业实现赢利的关键,在于提高对数据的加工能力,通过“加工”实现数据的“增值”。智慧旅游的发展离不开大数据,依靠大数据提供足够有利的资源,智慧旅游才能得以“智慧”发展。由于智慧旅游的“智慧”体现在“旅游服务的智慧”、“旅游管理的智慧”和“旅游营销的智慧”。所以大数据技术在智慧旅游中的应用主要也在这三个方面。